Isaac Newton Primary School

Addition Progression

We will teach number sentences such as $8+5=13$ throughout the school

1. Using objects and fingers
$1+2)=3$
$1+3$

This will include the use of a range of concrete visual apparatus such as numicon, counters, cuisenaire rods and dienes etc
2. Using number lines:

$$
8+5=13
$$

$$
+1+1+1+1+1
$$

3. Counting the tens and then the units

So children count the tens first $=60$
Then units $=9$
When the tens or hundreds barrier is broken the pupils will be expected to exchange

4. Counting tens and units with jottings

$$
\text { e.g. } 24+45 \Rightarrow \quad 20+40=60
$$

5. Vertical method

$$
\begin{array}{r}
67 \\
+22 \\
\hline 89 \\
\hline 678 \\
\hline
\end{array}
$$

6. Vertical method - crossing the barrier

$$
\begin{array}{rrr}
7 & 8 & 3 \\
& 4 & 2 \\
\hline 8 & 2 & 5 \\
\hline 1 & +\begin{array}{lll}
3 & 6 & 7 \\
8 & 5
\end{array} \\
\hline 4 & 5 & 2 \\
\hline 1 & 1
\end{array} \quad+\begin{array}{llll}
3 & 5 & 8 & 7 \\
& 6 & 7 & 5 \\
\hline 4 & 2 & 6 & 2 \\
\hline 1 & 1 & 1
\end{array}
$$

7. Adding time:

Please avoid columns as this leads to problems and answers such as 8.75 pm and 25.10.

Subtraction Progression

We will teach number sentences such as 7-4=3 throughout the school

1. Using objects and fingers

2. 1 less - using objects if needed

This will include the use of a range of concrete visual apparatus such as numicon, counters, cuisenaire rods and dienes etc
3. Counting back on a number line

4. Cross tens barrier by exchanging (using Dienes/ Place value counters)

5. Using a number line to back

$$
47-23=24
$$

6. Using a number line to count on $102-89=13$

7. Standard written methods - including crossing barriers
$\begin{array}{r}79 \\ -\quad 56 \\ \hline 23 \\ \hline\end{array}$
$\begin{array}{r}6 \chi^{1} 2 \\ -\quad 56 \\ \hline 166 \\ \hline\end{array}$

Multiplication Progression

We will teach number sentences such as $3 \times 2=6$ throughout the school The times tables that should be known at each stage are in our maths progression document

1. Count repeated groups of the same size

12345678910
2. Repeated addition

$$
\begin{aligned}
& 2+2+2+2+2=10 \\
& \text { Leading to } 5 \times 2=10
\end{aligned}
$$

3. Understanding multiplication through arrays:

$$
\begin{aligned}
& \text { So } 2 \times 5=10 \\
& \text { And } 5 \times 2=10
\end{aligned}
$$

4. Express multiplication on a number line as repeated addition:

So $3 \times 5=15$
5. Using arrays to understand related multiplication facts:

$$
\begin{array}{ll}
9 \times 4=36 & 4 \times 9=36 \\
36 \div 4=9 & 36 \div 9=4
\end{array}
$$

6. Grid Methods

x	30	5
7	210	35

$$
210+35=245
$$

x	30	5
20	600	100
6	180	30

$$
\begin{array}{r}
600+100=700 \\
180+30=210 \\
700+210=910
\end{array}
$$

7. Standard written methods - short and long multiplication

Division Progression

1. With objections - sharing

2. With objects - share into equal groups

How many 4's in 12
$12 \div 4=3$

3. Grouping with remainders

How many 3 's in 10 ? $10 \div 3=3$ r 1

4. Arrays

$$
36 \div 4=9 \quad 36 \div 9=4
$$

5. Number lines
$24 \div 4=6$

6. Short division
035
$5 \longdiv { 1 ^ { 1 } 7 ^ { 2 } 5 }$
137 r 5
$79^{2} 6^{5} 4$
$8 \longdiv { 2 8 . 7 5 } \begin{array} { r } { 2 3 ^ { 7 } 0 . 0 ^ { 4 } 0 } \end{array}$
7. Long division:

$$
\begin{array}{ll|llll}
& & & & 2 & 8 \\
& 5 & 4 & 3 & 2 & 8 \\
& & 3 & 0 & \downarrow & \\
& & 1 & 3 & 2 & \\
& & 1 & 2 & 0 & \downarrow \\
& & & 1 & 2 & 0 \\
& & & 1 & 2 & 0 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{lllll}
& 5 & 2 & 8 & \frac{4}{5} \\
\hline
\end{array} \\
& \begin{array}{llll}
\mathbf{3} & \mathbf{0} & \mathbf{0} & \\
\hline \mathbf{1} & \mathbf{3} & \mathbf{2} &
\end{array} \\
& \begin{array}{lll}
1 & \mathbf{2} & \mathbf{0} \\
\hline \mathbf{1} & \mathbf{2}
\end{array} \\
& \frac{12}{15}=\frac{4}{5}
\end{aligned}
$$

